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ABSTRACT

Linear prediction is presented as a spectral modeling tech-
nique in which the signal spectrum is modeled by an all-pole
spectrum. The method allows for arbitrary spectral shaping in
the frequency domain, and for modeling of continuous as well as
discrete spectra (such as filter bank spectra). 1In addition,
using the method of sel%?tive linggg Eregic;ion, ail-pole modeling
is applied to selected portions of the sSpectrum, with applications
to speech recognition and speech compression. Linear prediction
is compared with traditional analysis-by-synthesis techniques
for spectral modeling. It is found that linear prediction offers
computational advantages over analysis-by-synthesis, as well as
better modeling properties if the variations of the signal spec-
trum from the desired spectral model are large. For relatively
smooth spectra and for filter bank spectra, analysis-by-synthesis
is judged to give better results. Finally, a suboptimal solution

to the problem of all-zero modeling using linear prediction is

given.
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I. INTRODUCTION

The short-time spectrum has been perhaps the single mos’
important method of analysis for the study of speech. 1Its
applicctions in speech synthesis, speech recognition and Spea-
ker identification are pervasive and well known. The extensive
use of the short-time spectrum as an analysis tool began with
the development of the sound spectrograph [l). Even today, this
three-dimensional time-frequency-intensity spectral representa-
tion is of great utility. However, there are obvious limita-
tions on the range and flexibility of the types of analysis
that can be performed, as well as limitations in the resolution

and dynamic range of the output spectrogram display.

Many of the limitations of the spectrograph were overcome
upon the introduction, in the 1950's, of high-speed digital
computers in spectral analysis. Simultaneous with the advance
in computation there were significant advances that occurred

in understanding the acoustics of speech production. This was

highlighted in 1960 by the publication of Fant's Acoustic

Theory of Speech Production [2]. As a result of the two types

of advances mentioned above, the method of spectral analysis-by-
synthesis (AbS) for the reduction of speech spectra was intro-
duced at M.I.T. and Bell Laboratories in 1961. At M.I.T. the

method was used on filter-bank derived spectra to extract the
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pole pattern of vowels [3,4) and pole-zero patterns of nasals
[S]. At Bell Laboratories, analysis-by-synthesis was used on
the computed spectrum of a single pitch period “o extract the
formants (resonances, poles) of the vocal tract as well as the

zeros of the glottal spectrum [6].

In spectral AbS, a speech spectrum is fitted by another

spectrum that is represented in terms of poles and zeros. The

fit is optimized through the minimization of some error criterion.

The eiror between the two log spectra is minimized in an
iterative manner. The early attempts minimized the error by
recursively varying only one pole or zero at a time. These me-
thods were error prone and were not easily adaptable to an au-
tomatic algorithm. More recently, Olive [7] developed a Newton-
Raphson technique that performs the iterative computation on all

poles simultaneously and in a straightforward automatic manner.

In this paper we present another method of spectral modeling
which makes use of recent advances in the field of digital signal
processing, in particular the introduction of linear prediction
(LP) to speech analysis. The major difference between AbS and
LP analysis is the error criterion used in the matching process,
which in the latter is the integrated ratio of the two spectra.
In general, this error critericn leads to a better spectral

envelope fit. In addition, for the special (but important) case
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of an all-pole model spectrum, LP analysis offers two important

advantages: (a) The computations for the spectral parameters

are straightforward and noniterative, and (b) if the time signal

is available there is no need to compute the spectrum first.

The two methods have two properties in common: (a) The spectral
matching can be done selectively to any portion of the spectrum,
and (b) both error criteria are functions of the ratio of the
original and model spectra, thereby resulting in a matching

process that is uniform over the frequency range of interest.

In Section II we apply LP analysis to spectral matching

by all-pole model spectra. Section III describes the properties
of the optimum model spectrum. In Section IV we introduce the

method of selective linear prediction, where LP analysis is

applied to a selected portion of the spectrum, and we describe
its applications to speech recognition and speech compression.
Section V describes the application of LP analysis to the modeling

of discrete spectra (such as harmonic spectra and those obtained

from a bank of filters). Section VI examines the properties of
the error measure used in LP analysis and gives a critical com-

parison between LP analysis and analysis-by~-synthesis. Section VII

gives a suboptimal solution to the problem of all-zero modeling

using LP analysis.
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II. LI EAR PREDICTIVE SPECTRAL MODELING

Let us assume that we are given a power spectrum P(w) with
bandwidth B, i.e. P(w) is known for OSwab=2nB. (The more general
case where the frequency range covers only a portion of a spectrum
is treated later.) 1In this method, we shall view P(w) as the
spectrum of some signal s(nT) that was sharply low-pass filtered
at B Hz and sampled at a frequency fs=2B=—%—, where T is the
sampling period. We shall view P(w) as such irrespective of how
it was actually generated. This now allows us to deal with P (w)
as the spectrum of a sampled signal and, hence, we can make use
of digital signal processing techniques. In particular, instead
of using the complex s plane we now use the complex z plane. In
essence, we map P(w) onto the upper half of the unit circle in
the z plane such that the angular distance 8=wT. The mapping is
such that w=0 corresponds to 8=0 and w=w, corresponds to 6=m,

’n addition P(-w)=P(w) defines the spectrum over the bottom half
of the unit circle, i.e. the spectrum is even and real. (For
convenience, we shall set the sampling interval T=1. For other
values of T simply replace w by wT in the appropriate equations.)

Thus, we shall assume that

P(w) = |S(ed¥)|? , (1)

where S(z) is the z transform of the hypothetical signal S,
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i We wish to fit P(w) in some optimal mannar by an all-pole
spectrum ﬁ(w). Let us assume that the model spectrum corresponds
LU to a transfer function S(z) given by i
a G G
S(z) (D) B sl (2)
1+ 3 a, z
k=1
2
|
p -k l
where A(z) =1+ 3 a, z (3)
k=1
{
will be called the inverse filter, p is the number of poles
in the model spectrum, and G is a constant gain factor. The model
spectrum P(w) is then given by
E ! ' 2
k1 a A Jw 2 G
N Plw) = |S(e”) | = —
|a(ed®) |
1
R L ) g : (4)
p . 2
- 1+ 2 a,e Jkw
‘ k=1
1 Given a spectrum P(w) and a number of poles p. we must determine
f the parameters {ak, l1=ksp} and G.
h We define an error measure E between P (w) and ﬁ(w):
. 2 L
r ! P(w)
Y4 E = T‘ f Y 3 dw (5)
. T n P(w)
g 1 - Jw, 12
= == [ Plw) [A(e?)]° do . (6)
-n
5
ol TR, - i - “,_‘TY .—Y-—_'A- - .-,l i e HF,J" - - =
II 2 v a 1 -
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E can be interpreted as the total energy of the "error signal"
obtained by passing the hypothetical signal s, through the in-
verse filter A(z). (This is clear by using Parseval's theorem.)
Note from (6) that E is defined to be independent of G. The

gain factor is determined from energy considerations.

The parameters {ak} are determined by minimizing E in (6)
with respect to each of the parameters. This is accomplished by
setting

%gL-= 0, lsi<p . (7)
i

From (4-6) it can be shown that (8]

8B = 2]R, + g a, R;.
2a; i7" o1 Tk Uli=k[] (8)
1 m
where Rk = 5= J P(w) cos(kw) dw (9)
L

is the autocorrelation function corresponding to the signal spec-

trum P(w). From (7) and (8) we must have

p
z a, Rli-kl = -Ri, l<i<p . (10)

k=1
This is a set of p linear equations in p unknowns which can be

solved for the parameters {ak} of the all-pole model spe~trum.

G". = V'~. T ar r "”7‘... P ﬁ“‘-.‘ﬁ.
e = | ] S

=, . e
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A recursive solution is given elsewhere (8,15,16]).

The minimum error is obtained by substituting (9) and (10)

in (6). The result can be shown to be

(11)

where the dependence of the minimum error on p is shown explicitly.

The gain factor 62 in (4) is obtained by conserving energy

between the original and model spectra, i.e.

™
[ Plw) dw = %7 [ Plw) dw
-7 -7

"A
1 / P(w) cos(iw) dw
T =7

is the autocorrelation function corresponding to the model spec-

~

trum. An analytic expression for Ri is more easily obtained

from the unit sample response ;n of S(z) in (2). Taking the in-

verse z transform of (2) we have

(

0 , n<O0,
G , n=0,
p -

\;51 %k ®n-k ’

n>0,
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By definition,

R =g2. ¥ R 16)
= - 3 a (le
o} k=1 k Tk
=  of % ,
and Ri = ]:f.-]_ ak R,i-k, ’ 15,1,5-’ . (17)

From (10), (12), (1¢) and (17), we ¢onclude that

ﬁi =R, , 0sicp , (13)
P
and c? = R, + kzl a, R . (19)

Therefore, from (11) ang (19), 62 is equal to the minimum error

Equations (10) and (19) Completely Specify the model spec-
trum ﬁ(w). Given g Spectrum P(w) and 3 desired number of poles
P, the parameters of P(w) are obtained by first Computing the

autocorrelation coefficients Ri’ O=isp, using (9). The coeffi-

Cients {ak} are then Computed from (10) ang the gain g from (19).

Equivalently, if the Speech signal itself ig given, it jis

not necessary to Compute P(w) fjrgt, Instead, the autocorrelation
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coefficients Ri can be computed from the signal directly:

Ry = 2 s sn+|i| 4

n'- L

O=i=p . (20)

It is clear that (2)) can be evaluated only if the signal ig of
finite duration. This usually brings up the issue of windowing.
(See Makhoui and Wolf [8] for a discussion of windowing of speech

signals.)

The spectral fitting method described in this section can
oe shown to be equivalent to the autocorrelation method of
linear prediction [8,9], where the coefficients a, are the pre-
dictor coefficients. That is why we have chosen to call this

method the linear predictive (LP) spectral modeling method. The

model spectrum P(w) is also known as the LP spectrum.

Figure 1 shows an example of LP spect.al matching for a
spectrum over 0-10 kHz with the number of poles p=28. In this
case the original spectrum P(w) was obtained by computing the
fast Fourier transform (FFT) of a 20 ms, Hamming windowed, 2¢
kHz sampled speech signal. The spectrum ﬁ(m) was computed
from (4) by dividing 62 by the magnitude squared of the FFT of
the sequence; 1, a1r Ay eeey ap. Arbitrary frequency resoli-

tion can be obtained by simply appending an appropriate number of

zeros to this sequence before taking the F-T,
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Before we turn to the general case of selective spectral

matching,

ﬁ(w).

LB It e s 04.«.'_--"' ;;:— :-"':-r|1t- i - i -' 3 W B .
L {3 ; e

we shall examine the properties of the model spectrum

11
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III. PROPERTIES OF THE MODEL SPECTRUM

The poles of the model spectrum can be found by computing
the roots of the polynomial A(z) in (3). Since the coefficients
a, are real, some or none of the roots are real and the rest are
complex conjugate pairs. Conversion of the poles to the s plane
can be achieved by setting each root zk-eskT , where sk-ck+jwk is

the corresponding pole in the s plane. If the root z, =z +jz

kK “kr ki,
then:
2ot
we = F arctan ;Ei ; (2la)
kr
1 2 2
o, = 7T log(zkr+zki) 7 (21b)

where z, . and z,; are the real and imaginary parts of z, o re-

spectively, and T is the sampling period.

One important property of the poles of §(z) is that they are
guaranteed to be inside the unit circle, provided P(w) is a posi-

tive defini*e spectrum [10].

For a well chosen number of poles p, some of the poles of
g(z) can be related to vocal tract resonances. The extent to
which the formant values thus obtained reflect the actual reso-
nances of the vocal tract depends on szveral factors, including
the adequacy of the all-pole model for each spectrum considered,

and the number of poles in the model. These issues are

12
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discussed in more detail elsewhere [8].

The manner in which the model spectrum ﬁ(w) approximates
P(w) is reflected largely in (18), which relates the autocorrela-
tion coefficients ﬁi and R . Since P(w) and ﬁ(w) are the Fourier
transforms of Ri and ﬁi' respectively, it follows that increasing
the value of p increases the rarige over which Ri and ﬁi are equal,
resulting in a better fit of ﬁ(w) to P(w). In the limit, as
p==, ﬁi becomes identical to Ri for all i, and hence the two

power spectra become identical:

~

P(w) = P(w) , as p=+e= , (22)

Since the minimum error Ep = GZ, we have from (5):

E |
lav
€

[oR
€
]

[

.

= (23)

“J>
€

Equation (23) is true for all values of p. In particular, it is
true as p+= , in which case from (22) we see that (23) becomes
an identity. Another important case where (23) becomes an iden-
tity is when P(w) is an all-pole spectrum with P, poles, then
s(w) will be identical to P(w) for all pro. Relation (23) will

be useful in discussing the properties of the error measure in

Section vyg,

13
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Another property of ﬁ(w) that will be discussed later on

is that the slope of ﬁ(w) is zero at w=0 and w=n:

3P (w)
Jw

=0 , w=0,7 . (24)

This can be easily seen by rewriting (4) as

. 2
P(w) = g ; (25)
b +2 % b, cos(kw)
0 k=1 k
. p-|k|
where bk = nio an an+|k| ’ a0 =1, Osksp , (26)

the inverse filter A(z). By taking égéﬂl

1 are the autocorrelation coefficients of the impulse response of
{
! in (25), it is clear
{

that it is equal to zero at 0 and 7.

Equation (25) gives another method for computing P(w), and

that is by dividing G2 by the real part of the FFT of the sequence:

bO’ 2b1, 2b2,..., 2bp

14
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IV. SELECTIVE LINEAR PREDICTION

We now generalize the Lp spectral modeling method to the

case where we wish to fit a selected portion of a given spec-

trum.

In general, we have a spectrum P (w), OSmfmb + and we wish

to match the spectrum in a region (g: WQSWSwﬁ) by an all-pole
spectrum ﬁ(w) as given by (4). Call the spectrum in the region
£, P'(w). In order to compute the parameters of ﬁ(w) we simply
map the region 2 onto the unit circle such that w =0 (the arrow

is read "mapped into") and ma+n, and then follow the same proce-

dure outlined in Section II. The mapping is done as follows:

Define w' = w - g
o
' = -
and wb = wa wa .
Then { - Ofm'fwg (27)
and T' = ET ’
“b

where T' is a new hypochetical sampling interval. The problem
how reduces to the original one. The autocorrelation coefii-
cients Rk » 0=k=p, are computed from (9) with P'(w") replacing

P(w). Then (10) and (19) are used to solve for the parameters

of the model spectrum P(w').

15
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Figure 2 shows an example of selective linear prediction.
The signal spectrum is identical to that shown in Figure 1. 1In
Figuie 2 the two halves of the spectrum were matched separately
by a l4-pole model spectrum in each half. 1n the left half wano
and wB=S kHz, and in the right half wa-s kHz and waalo kHz.
Since the matching for each half was done independently, there
is no guarantee that the two model spectra will join smoothly
at 5 kHz. 1In fact, in general, a discontinuity such as the one
in Figure 2 is expected. PRecall that the model spectrum has
zero slope at 0 and m. This is evident in Figure 2 at 5 kHz.
The reader wil! also note other differences between Figs. 1 and 2

in the manner i:.: which the original and model spectra match.

Figure 3 shows the same signal spectrum as in Figure 2,
but with the right half of the spectrum being fitted by only a
5-pole spectrum. This demonstrates the flexibility of selective
linear prediction in that different portions of a spectrum can be

matched using different numbers of poles.

Applications to Speech Recognition znd Compression

Here we shall demonstrate the idea of selective linear pre-
diction as applied to speech recognition and speech compression.
It is important to note that, since we assume the availability of

the signal spectrum P (w), any desired frequency shaping or

16

l |
i
I
I
I
i
X

B = o

i

»ne




Bolt Beranek and Newman Inc.

BBN Report No. 2578

£ Y 7 I

O3 S3T3 T9pouw a1od-yT 3JuspuadapuT y3mm ‘T
Teubts sue

ol

‘suotbax zHY QT-§ pue ¢-g a2yl

*bT4 ur se umijzoads

S 9yl 03 uoT31OTpPaad IRIUIT SATIDAT[LS JO uoTaedITddy *z *b14

(ZH¥) ADN3INDO3M4

£l

S t

[,

ol

02

.T—.nﬂn

og

ot

- e e

09

(8P) A9H3IN3 3IAILVIIY

17

% PR




‘uotrbax zHY 0T-S 3Y3 03 3T a1od-g ® pue
uotbal zHY -0 9Y3 03 3ITF SBTOd-§T © YITM ‘T *HbTd uTr se unijzoads

-

TeubTs awes ay3j o3 uoT3OTpPaxd IeauUTT 9AT309Tas JO uoTjedTTddy °*g 514

(ZHY) ADN3IND3IML
9 S Ld

Bolt Beranek and Newman Inc.

(8P) A9HIN3 3AILVI3Y

BBN Report No, 2578




BBN Report No. 2578 Bolt Beranek and Newman Inc.

filtering can be done directly to the signal spectrum before

LP analysis is performed. This will be clear below.

Figures 1-3 show the same signal spectrum computed from a
20 kHz sampled siqgnal. Now, in order to model the spectral en-
velope for the whole frequency range from 0-10 kHz, one would
probably use anywhere between 24-28 poles for the all-pole model
spectrum. A 28-pole fit is shown in Fig. 1. For speech recogni-
tion applications, however, the main region of interest is the
0-5 kHz region. The spectrum in the 5-10 kHz region is of inter-
est mainly for the recoaqnitior of fricatives, in which case the
total energy in that region might be suffi-ient. We also know
that in LP analysis the spectral matching process performs uni-
formly over the whole frequency range, which might not be de-
sirable in this case because the all-pole assumption for many
speech sounds is less applicable for frequencies greater than
5 kHz. Therefore, instead of modeling the whole spectrum, we
use selective LP to model the lower 5 kHz by a lower order all-
pole spectrum. A l4-pole fit is shown in Figs. 2 and 3. 1In this
manner, nctonly do we reduce our computations for the poles, but
we are also in the advantageous position of having to interpret
14 instead of 28 poles. The total energy in the 5-10 kHz region
can be easily computed directly from the spectrum and used for

the detection of fricatives if desired. Alternativel- one could

19
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=~ -

-

fit a very low order ail-pole spectrum o that region, as shown

in Fig. 3.

Now, the same type of analysis could have been done in the

=

time domain, but consider what one would have had to do. First,

the 20 kHz sampled signal must be sharply filtered at 5 kHz.

Second, and very importantly, the signal must be down-sampled to

10 kHz by discarding every other sample. Third, a l4-pole LP

analysis is performed on the resulting signal. And fourth, in

(R

order to obtain the energy in the 5-10 kiiz region, one subtracts

the enzrgy in the 10 kHz signal from the energy in the original

20 kHz signal. (It is even more complicated if one wants to per-

form an LP analysis on the 5-10 kHz region in the time domain.)

Not only is the time domain analysis more involved and costly;

it is also very inflexible. Consider the problem of having to

=

carry the same procedure to match the spectrum in the 0-3.5 kHz
region instead of 0-5 kHz. 1In that case, it would be necessary
to perform the time-domain down-sampling from 20 kHz to 7 kHz:

a rather difficult task. The elegance of the method of selective
linear prediction lies in the fact that the two problems of sharp
filtering and down sampling are completely solved by working in

the frequency domain.
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We are currently applying this property to speech com-

pression systems that employ linear prediction. 1In this appli-

cation, it is desirable to be able to test the performance of the
system at different sampling rates. We sample the signal at the
highest sampling rate desired, and then we simulate the perfor-
mance of different sampling rates by applying selective linear

prediction to the corresponding frequency bands.
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V. MODELING DISCRETE SPECTRA

Thus far we have assumed that the spectrum P(y) is a con-
tinuous function of frequency. Most often, however, the spectrum
is iknown at only a finite number of frequencies. For example,
an FFT-derived spectrum has values at equally spaced frequency
points. On the other hand, filter bank spectra usually have
values at frequencies that are not necessarily equally spaced.
For these discrete cases we define the error measure E as a sum-

mation instead of an inteqral:

< o G2 N;l p(wn) (28)

n=( ﬁ(wn)

where N is the total number of spectral points on the unit circle.
Following the same minimization procedure as in the continuous
case, we obtain the set of equations (10) again, but the coeffi-
cients Rk are now defined as

N-1

R, = pX

K = P(wn) cus(kwn) g

0
Note that in (28), only values of ﬁ(w) at the frequencies w
contribute to the total error. Therefore, after P(w) is obtained,
the error between P(w) and P(w) is minimum at the frequencies

wo o 0=nsN-1. At other frequencies, P(w) cannot be guaranteed
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in any way except in that it is a smooth function of frequency

as given by (4).

If the spectrum is known at equally spaced frequency points,
then if desired, (29) can be computed via a fast Fourier trans-
form (FFT) of the spectrum P(wn). (In that case a highly com-
posite value of N would help.) However, if the spectrum P(mn) is
known at frequencies that are not equally spacea, then one can
define a new spectrum Q(wm) at equally spaced frequencies such
that Q(mm) = P(mn) at every wo o and is zero otherwise. One can
then use an FFT on Q(mm) to compute Rk' We do not necessariiy
recommend the use of the method just outlined for cases where
the frequency spacing is nonuniform, because very often it is
simply faster to Compute (29) directly. However, we wished to
make the point that adding spectral values that are zero does
not affect the error minimization process in any way, since
those values do not contribute to the total error, as is clear

from (28).

Computational Considerations

The solution for the predictor coefficients a, in (10) is un-
affected if each of the autocorrelation coefficients is multi-
plied or divided by a constant. Therefore, the division by N

in (29) is unnecessary to obtain the desired solution of (10).
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The only possible importance of the division by N (or some other

number) is to get a good estimate of the total energy Ro' What
number to divide with depends on how the signal spectrum was

obtained and on the particular application.

The spectrum P(mn) is an even function of frequency, i.e.

P(wN_n) = P(wn). Usually what we have is a spectrum that we map

onto the unit circle, as explained in Section IV. The evenness !
property is then applied in order to complete the definition of

the spectrum around the unit circle. The mapping in the conti-

nuous frequency case is no problem. However, there are a few

matters to worry abcout in the discrete case. The main problem
is the relation of the frequencies w, and wB in (27) to the
discrete frequencies w . There is a total of four possible cases

g which are divided in two categories:

f' (a) N even

| (1) wy = 0, wN/Z - .

} (2) None of the frequencies w, correspond to either 0 or
m.
(b) N odd
(1) wy - 0.
(2) Wyeyg > T
2

]
e .

[
|
il
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] b The four cases are illustrated in Fig. 4, where the crosses on

the unit circle correspond to the frequencies w,. Case (al) is

- the one usually encountered in FFT-derived spectra with even N.

.
———

Case (a2) is usually encountered with filter bank spectra. Note

that, because of the evenness property of P(wn), (29) can be

1 simplified, but in a slightly different manner for each of the

four cases.

Application to Filter Bank Spectra

We simulated the output of a filter bank by simply adding

the energy in specified frequency bands from an FFT-derived

b spectrum. The resulting simulated filter bank has center fre-
{ quencies and bandwidths similar to the hardware filter bank at
& the Speech Communication Laboratory at M.I.T. The filters are

linearly spaced up to 1.6 kHz and logarithmically spaced there-

t after. Figures 5 and 6 show two examples of the application of
‘i, LP spectral modeling to the outputs of the simulated filter bank.
il In each figure, the original spectrum and the corresponding simu-

e lated filter bank spectrum are shown along with a 14-pole LP

spectrum in each case. (The spectral lines in the filter bank

i

spectra are shown with a finite width only because of the manner
in which they were plotted.) The filter bank LP spectra in

Figs. 5b and 6b are quite similar to those in Figs. 5a and 6a,
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L
N

(2)
(a) N EVEN

Fig. 4. Four possible configurations for discrete spectra. Each

cross represents one of the N spectral lines in the
spectrum,

(b) N ODD
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Fig. 5. Application of LP modeling to a filter bank vowel spectrum,
(A) A l4-pole fit to the original spectrum.
(B) A l4-pole fit to the simulated filter bank spectrum,
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_ Fig. 6. Application of LP modeling to a filter bank fricative
3 spectrum. (A) A l4-pole fit to the original spectium.
(B) A l4-pole fit to the simulated filter bank s-actrum.
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in spite of the relatively few spectral points in the filter

bank spectra, especially at high frequencies. The extra peak at

low frequencies in Fig. 6b is due to the lack of spectral points

at frequencies less than 150 Hz.

Spectra of Periodic Signals

We have seen in Section III that if the signal spectrum P(w)

consists of P, poles only, then for pP=p, the LP spectrum 5(w) is

identical to P(w). The situat on is not so favorable for discrete

signal spectra, as we shall see below.

Let us assume that we are given a discrete spectrum Pl(w)
that has values at equally spaced frequencies with a spacing of

wo » such that

Po(w) + W=nw_ , n integer ,

Pilw) = (30)

0 , otherwise,

where P (w) is a P,-Pole spectrum. Pl(w) can be regarded as the

spectrum of a periodic signal that is generated by applying a

pPeriodic unit sample Sequence with period 1= %1— to an all-pole

)
filter whose magnitude squared frequency response is given by
Po(w). The question is, if Pl(w) is our signal spectrum, what
will be the corresponding LP model spectrum for P=p,? For LP

modeling in the discrete case we compute the parameters a, from
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(10) , where the autocorrelation coefficients Rk are computed from
the DFT in (29) with P(wn) replaced by Pl(nwo). For a nonzero
fundamental w the resulting model spectrum il(w) will not be
equal to Po(w) for P=P,, Or any other wvalue of p. This is
illustrated in Fig. 7a where Po(w) is the dashed curve, Pl(w) is
the line spectrum with F = ;% = 312 Hz, and ﬁl(w) is the solid
curve and represents the LP spectrum corresponding to Pl(w) for
P=P, (here po=14). The discrepancy between ﬁl(w) and P,(w) in
Fig. 7a is obvious. A decrease in Fo brings il(w) closer to P, (w)
as in Fig. 7b. 1In the limit as F, approaches zero (wo+0), Pl(w)

approaches Po(w) and ﬁl(w) becomes identical to P,(w), as we

already know from the continuous frequency case.

Figures 8 and 9 show other examples of modeling spectra of
periodic signals. The types of discreparcies that can occur be-
tween the model and original spectra include merging or splitting
of pole peaks, and increasing or decreasing of pole frequencies
and bandwidths. In general, the pole movements are in the direc-
tion of the nearest harmonic. Atal [11] has been making quantitative

measurements of these discrepancies.

It is important to note in Figs. 7-9 that the dashed curve
in each case is the only possible po-pole spectrum that coincides

with the line spectrum at the harmonics. (In general this is

30
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RELATIVE ENERGY (DB)

2 3
FREQUEMCY ( KHZ)

’ |
2 3

FREQUENCY (KH2)

Fig. 7. LP modeling of harmonic spectra.
Dashed curve: Filter l4-pole spectrum,
Vertical lines: Corresponding harmonic spectrum for
(A) Fo=312 Hz, and (B) Fo=156 Hz,
Solid curve: A 1l4-pole fit to the discrete harmonic
spectrum,
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Fig. 8. LP modeling of harmonic spectra. (See Fiq. 7)
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Fig. 9. LP modeling of harmonic spectra. (See Fig. 7)
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true only if the period 122po samples.) It is unfortunate %Zhat
the all-pole spectrum resulting from LP modeling does not yield

the spectrum we desire.

Another relevant spectrum is that of a single pitch period =;
let that be Q(w). It is well known that Q(w) is an all-zero
spectrum that coincides with Po(w) oaly at the harmonics nw,

i.e. Qlnw,) = Pl(nwo) = Po(ngﬂ. However, since Q(w) is otherwise
not equal to P,(w), applying LP modeling to Q(w) with p=po will
result in an LP spectrum 6(w) that is still different from the
all-pole ?o(w) and also different from the LP spectrum ﬁl(w)
corresponding to the discrete spectrum Pl(w), i.e. 6(w) # ﬁl(w) #

Po(w).

It would seem from the above that LP analysis of periodic
signals (especially those with high fundamental) is doomed to
be of a very approximate nature. Indeed, if nothing is known
about the transfer function of the system, there is a basic loss
of information in the spectrum of the periodic signal that is
irrecoverable. This is true whether one uses linear prediction
or some other form of analysis. However, the previous discussion
shows that even when we are given the extra information that the
system transfer function is all-pole, LP analysis does not seem

to be able to recover that all-pole spectrum. The reason, of

34
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| 5 course, is that nowhere in the analysis did we actually use the
- fact that Po(w) is all-pole. For example, in computing ﬁl(w)

o= from the line spectrum Pl(w), we did not make use of the fact

¥ that Pl(nwo) = Po(nwo) and that P,(w) is all-pole. In fact,

= LP analysis does not allow us to use that information.

— All is not lost, however. The trick is to use the fact

: that Pl(nwo) = Po(nwo) to generate Po(w) for all w , and then

) to apply LP analysis to that, resulting in an LP spectrum iden-
E. tical to Po(w). In order to generate all of Po(w) from Pl(nwo)

we use the important fact that the autocorrelation of an all-

Pu—
L

zero spectrum with p  zeros is equal to zero for lags |k|>po.

For example, from (26) we see that the autocorrelation bk of

the all-zero inverse filter A(z) is zero for |k|sp. Since P, (w)

| o |
e !

is all-pole, its inverse P;I(w) is all-zero. Let the autocorre-

. =1
lation of P " (w) be ry. Then r =0 for |kl>po,

=]

= P -
pol(w) = 3° r, e Jkuw ' (31)
L e
| )
-1 - 0 =jknw
and Po (nwo) z r, e 0 . (32)

k=-po

But since Pl(nwo) = Po(nwo) we must have

PIl(nwo) - Pgl(nwo) X

35
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] . , 1
Therefore, Pll(nw ) = O r, e Jkn“’o
o k=~
==p
° 1
p -
= 3° r, e jerkn/t » 0O=nst-1, (33)
k=-p I
o
where 1 is the number of samples in a pitch period. If we define I '
T 4
(34) f u:
and r__, =1, , I
T=1 .
then Pillinu) = o g e732mkn/T o s -
1 ) k=0 k

But (35) is a t-point DFT, whose inverse is given by

-1 :
J2mkn/t G ker-1. (36)

" o
= S PSR . S

. 1 .0 -1
r == I P, (nw ) e
k T el 1 0

' Therefore, from (36), (34) and (31), one can reconstruct Po(w).

This is done as follows:

1. Compute the inverse of the line spectrum:

2. Compute the inverse DFT of le(nwo) using (36).
3 With (34), this yields the autocorrelation function Iy . (37)
3. Compute the all-zero spectrum P;]'(w) from (31) for a

large number of frequencies.

4. compute P_(w) = 1/p71(u).

1
1
1
I :
il (nuy) = 1/P (nw ), Osnzc-1. 1
i
1
]
3
|
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If the spectrum Q(w) of a single pitch period is given, then the
first thing to do is to sample Q(w) at the harmonics. This yields
the line spectrum Pl(nwo). Then follow the procedure (37) above
to compute P,(w). Applying LP analysis to P,(w) with pP=p, will

then yield an LP spectrum equal to Po(w).

Above we have shown how to recover the complete all-pole
spectrum given a finite number of equally spaced points on it.
The only restriction is that the number of harmonics in the spec-
trum be at least equal to the number of poles. This can be thought
of as a method of "smoothing" the discrete spectrum. The smoothing
is done by resorting to the autocorrelation of the inverse spec-

trum. Thus we might label this type of smoothing as inverse

autocorrelation smoothing. Because this method of smoothing is
based on an all-pole assumption for the spectrum, its application
to more general cases has anticipated problems. As a simple
example, let us assume that the given harmonic spectrum is all-
Pole but noisy (e.g. as a result of quantization). This case

has arisen in our experiments in speech compression [15) where
selected spectral values are used as transmission parameters.

We employ the procedure giver. in (37) above to recover the linear
prediction coefficients. Problems arise upon quantization of

the spectral values to less than 5 bits., The autocorrelation co-

efficients as computed from (36) lose their positive definiteness
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which results in a smoothed spectrum that is negative in certain
regions. This, in turn, results in an unstable linear predic-
tion filter with some poles outside the unit circle. There are

ways to remedy these situations in a reasonable manner [15], Hut

41 the message is clear that one should anticipate such problems,
The same problems arise if the original spectrum contains zeros
as well as poles. It should be emphasized, hcwever, that these
problems arise when the number of harmonics in the spectrum is
small, i.e. on the order of the number of poles. If the number

of harmonics is at least twice the number of poles the problems

are not likely to arise. However, for those cases, regular LP

; analysis on the line spectrum produces satisfactory results,
¥

thus obviating the need to use the procedure in (37).
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VI. LINEAR PREDICTION VS. ANALYSIS-BY-SYNTHESIS

An important aspect of any fitting or matching procedure
is the properties of the error measure that is employed, and
whether those properties are commensurate with certain objectives.
In the spectral analysis of speech, a common objective is to have
the model spectrum E(w) approximate the envelope of the signal
power spectrum P(w). In this section we shall explore in some
detail the properties of the error measure used in LP analysis
and then compare it to the error measure used in AbS, always
using as our criterion of goodness the ability of each matcling

pProcedure to approximate the envelope of the signal spectrum.

LP Error Measure

One important consideration in estimating the spectral en-
velope is the determination of an optimal value for p, the num-
ber of poles in the model spectrum. This topic has been dis-
cussed elsewhere [8,9] and we shall not pursue it in this paper.
However, assuming that somehow we know this optimal value of P,
there remains the question of whether minimization of the error

measure in (5) will result in a good estimate of the spectral

envelope.

For each value of p, minimization of the error measure E

in (5) leads to the minimum error Ep in (11). It can be shown
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(8] that Ep is also equal to

~

E, = eo , (38)
a 1 m -~
where Co = 57— _£ log P(w) dw (39)

is the zeroth coefficient (quefrency) of the cepstrum correspond-~
ing to ﬁ(w). Ep can also be interpreted as the geometric mean

of the model spectrum ﬁ(w). Ep decreases monotonically as p
increases (8], and the minimum occurs as p-+= , where E(w) be-

comes identical to P(w), and (38) reduces to

where <) is obtained by subsituting P(w) for ﬁ(w) in (39). 1If
P(w) is a po-pole spectrum then Eszmin for all P2p,- The abso-
lute minimum error is a function of P(w) only, and is equal to
its geometric mean, which is always positive and usually non-
zero for speech spectra. This is a curious result, because it
says that the minimum error can be nonzero even when the matching
spectrum ﬁ(w) is identical to the matched spectrum P(w). This
unusual property is due to the fact that the error measure in

(5) is defined as the average of the ratio of two quantities and
not their difference as is usual with most error measures such

as the mean squared error.
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Let the ratio of P(w) to P(w) be given by

E(w) = Eﬂ).
P (w)

Then from (23) we have

E(w)dw =1 , for all p.

E(w) can be interpreted as the "instantaneous errcr" between
P(w) and ﬁ(w) at frequency w. Equation (42) says that the
arithmetic mean of E(w) is equal to 1, which means that there
are values of E(w) greater and less than 1 such that the average
is equal to 1. (kxcept for the special case when P(w) is all-
pole, the conditior. E(w)=1 for all w is true only as p-= .)

In terms of the two spectra, this means that P(w) will be greater

than P(w) in some regions and less in others such that (42)

applies. However, the contribution to the total error is more
sigrnificant when P(w) is greater than s(w) than when P(w) is
smaller, e.g. a ratio E(w)=2 (+3dB) contributes more to the total
error than a ratio of 1/2(-3dB). We conclude that, after the
minimization of error, we expect a better fit of s(w) to P(w)
where P(w) is greater than E(w), tihan where P(w) is smaller. For
example, if P(w) is the power spectrum of a quasi-periodic sig-

nal (such as a sonorant), then most of the energy in P(w) will
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exist in the harmonics, and very little energy will reside be-

tween harmonics. The error measure in (5) insures that the
approximation of P(w) to P(w) is far superior at the harmonics

where the energy is greater, than between the harmonics where

v —
e s e

there is very little energy. Since ﬁ(w) is expected to be a

smooth spectrum (this is insured by choosing an appropriate

value of p), we conclude that minimization of the error measure
in (5) results in a model spectrum ﬁ(w) that is a good estimate
of the srectral envelope of the signal spectrum P(w). It should

be clear from the above that the importance of the goodness of .

the error measure is not as crucial when the variations of the

signal spectrum from the spectral envelope are much less pro-

nounced, such as spectra of unvoiced stops, spectra of single

e TN = S,

‘ pitch periods, and ordinary filter-bank spectra. 1

Another important property of this estimation procedure is
iw that, because tiie contributions to the total error are determined

by the ratio of the two spectra, the matching process should

perform uniformly over the frequency range of interest, irrespec-

tive of the shaping of the speech spectral envelope.

The error measure E is similar in its properties to an
error measure used by Itakura and Saito [12,13)] in their maxi-
mum likelihood method which results in the same set of equations

(10). Their error measure is also "more sensitive to the
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spectral peaks aund less to the dips" [12]. They conclude that
for the purposes of synthesis this is a good property because
the ear is more sensitive to peaks than to dips in the spectrum.
Itakura and Saito were not explicit in what they meant by spec-
tral peaks and dips. There are two likely interpretations:

(1) The peaks correspond to harmonic peaks, and the dips are
those between the harmonic peaks. (2) The peaks correspond to
formants and the divs are the valleys in between. The second
interpretation is the one Flanagan [14] gives in his review cf
Itakura and Saito's work. Flanagan states that "the minimiza-
tion results in a fit which is more sensitive at the spectral
peaks than in the valleys between the formants" [14]. We be-
lieve both interpretations to be correct, but under very differ-
ent conditions. It all depends on the number of poles in the
model spectrum. If the number of poles is less than the neces-
sary number to characterize all the formants in the spectrum
then indeed the fit could be better at the formant peaks than
in the valleys. On the other hand, if the number of poles is
greater than or equal to the minimum number of poles necessary
to represent the spectral envelope as in Figs. 1 and 5a, then
the fit in the valleys between the formants is just as good as
the fit at the formant y<aks. 1In this case, the first interpre-
tation given above is more appropriate. Indeed, it is a funda-

mental property of the error measure E in (5) that given any
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peaks and dips one wishes to define, one can always find a
value for p, the number of poles, such that the fit is equally
good at the peaks and dips. 1In fact, we know from (22) above

that as p+= , the model spectrum fits the signal spectrum

exactly, all peaks and dips included. This, of course, is also

true for all pzp_ if P(w) is a pP.,-pole spectrum.
) 0

It is clear from the above that the number of model spectrum
poles plays a crucial role in determining how the model spectrum

fits the sign:l spectrum. Since interpretations in terms of

peaks and dips can be misleading if not stated carefully, we pre-
fer to interpret the matching process by the relation of the

valuesof the signal spectrum P(w) relative to those of the model

spectrum ﬁ(w). We merely state that, after error minimization,
the fit will be better for values of P(w)>5(w) than for values
of P(w)<§(w). For spectral envelope estimation with an appro-
i priate number of poles, this guarantees us that harmonic peaks
(P(w)>5(w)) are matched better than the dips in between

(P (w) <P (w)), resultiny in a good spectral envelope match. For
purposes of synthesis, a better spectral envelope fit results

in better synthesis, i.e. a better "perceptual fit".

g Comparison With AbS

In AbS (3] the error measure that was normally used is given

44
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(in our notation) by:

E' = / E'(w)dw
w

E'(w) = [logP (w)~-logh (u)]?

2
loq[-’ﬂj

~

P(w)

[log E(w)]® .

Here 5(w) is the model spectrum, E(w) is the ratio of the two

spectra as in (41), and the integration in (43) is over the
frequency range: of interest. Minimizing E' is equivalent to
minimizing the mean squared error between the two log spectra.
In contrast to the error measure E in LP, here a minimum error

of zero is possible, namely when the two spectra are identi-

cal.

The error measures E and E' in (5) and (43) are similar in
that the contributions to the total error are functions of
the ratio of the two spectra. We have already mentioned that
this fact makes the matching process perform uniformly over the
frequency range of interest. However, the error measure E in
LP spectral matching has two advantages over E': (a) For an all-

pole model spectrum, the minimization of E in (5) leads to

ol TR L
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a solution where the coefficients of the resulting P(w) are
computed simply by solving a set of simultaneous linear equations,
while the minimization of E' has to be done iteratively. (b) For

many cases of interest, I is a superior error measure to E' if a

spectral envelope is desired. This is clear if one notes from
(44) that contributions to the total error E' are made equally
whether P(w)>§(w) or P(w)<§(m), e.g. a ratio E(w)=2 (+3dB) con-
tributes equally to the total error E' as a ratio of 1/2 (-3dB).
This means that energy at the harmonics (in voiced sounds) and

the lack of energy between harmonics contribute equally to the

total error. This, of course, will not lead to a good spectral

envelope. One can dramatize the difference between the error

L Ra o o

measures E and E' by assuming that the signal spectrum P(w)=0

for some range of frequencies (no matter how small). The ratio
E(w) will be zero for the same range, but E'(w) in (44) will be
infinite. The effect of this range of frequencies on the total

error is nil for E and total for E'. It is clear that for cases

where the variations of the signal spectrum about the spectral

ii envelope are large, E is a preferable measure of error to E'.

But then, traditional AbS methods have generally used ai-
ready smoothed spectra, in which case it is not exactly clear
which error measure is to be preferred. For the special case

b when the signal spectrum is all-pole we know that both LP and

46
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AbS error minimization result in a model spectrum that is iden-
tical to the signal spectrum. (A salient difference, though, is
that the minimum error E' in AbS will be zero.) For other smooth
signal spectra there is independent evidence (15] that the AbS
error measure might result in a better spectral fit. However,
for FFT-generated spectra (from a time signal) we believe that

linear prediction will generally be superior to AbS.

Comparison for Discrete Spectra

Another point of comparison between LP and AbS is in the
case of discrete spectra. This case is of particular interest
because AbS techniques were largely applied to filter bank
spectra. We shall consider only two types of spectra - harmo-
nic spectra and filter bank spectra. Both types of spectra will

be considerea to be samples on a smooth spectral envelope.

The definition of error for AbS is obtained by replacing the

integral in (43) by a summation

N-1 P(w_) 2
n

log| =
n=0 P(wn)

The comparison now is between E' in (45) and E in (28). The

absence of the factor G2/N in (45) is irrelevant to this discus-

sion.
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An example which will put the issues into focus is that
given in Section V, where the signal spectrum is an all-pole
harmonic spectrum Pl(w) as defined by (30), i.e. *he harmonics
lie on a po—pole spectrum Po(w). We have seen that LP analysis
will not result in the desired envelope spectrum Po(w), as was
illustrated in Figs. 7-9. On the other hand, one can show that
by minimizing E' in (45) with P(wn) = Pl(nwo), the model abs
spectrum will be identical to Po(w) for P=p,. (The only possible
restriction is that the number of harmonics be at least equa?
to the number of poles.) This is clear by noting that the abso-
Lite minimum value that E° in (45) can have is 7ero, and this
occurs only when the two spectra are equal at each frequency w_.
Since in tais example we know that there is a unique all-pole
spectrum Po(w) that is equal to Pl(w; at each frequency w =nw ,
we conclude that the all-pole model spectrum ﬁl(w) +1ll result

in an error E'=( » and therefore must be identical to Po(w).

The above example shows that for modeling of all-pole har-
monic spectra, AbS is clearly superior to LP. One could argque
that for this special case of all-pole harmonic spectra, it is
possible to use "inverse autocorrclation smoothing" as described
in Section V to recover the all-pole spectrum so that LP analysis

will result in the desired spectrum. However, as we pointed out

earlier, this method of smoothing 1is sensitive to spectral noise
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. ani to the existence of zeros in the signal spectrum; its use

is generally not recommended. We d¢ not mean to imply in the

above arguments that LP analysis should not be used at ail with
harmonic spectra. we merely point out that AbS gives better
results, but at a much higher computational cost. If the results
H shown in Figs. 7-9 ure satisfactory fcr the application one has
| in mind, then clearly LP analysis is to be preferred because of
| = the lower cost. If more acvurate rasults are desired then one
must pay the price inherent in AbS. The same comments also apply

to modeling of filter bank spectra.

The reader might sense a contradiction between the above

- conclusions and those made earlier in this section. (i) Earlier

R we stated that, especially for the case of spectra of voiced
" - sounds where the energy is mainly concentrated around the har-
i monics, such as in Fig. 5a, LP analysis is superior to AbS in

.

that it results in a better spectral envelope fit. (ii) On the
other hand, we have shown above that for the case of harmonic

spectra, such in Figs. 7-9, AbS is superior to LP. The contra-

&t diction is only apparent. The two types of harmonic spectra
- mentioned above are radically different in the way they affect
{Q == error minimization. The signal spectrum in Fig. 5a makes large

excursions from the spectral envelope. While these excursions

are of little importance in LP error minimization, they are
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disastrous to AbS error minimization. 1In contrast, in Figs. 7-9,

only the values at the harmonics are included in the error, so
that there are no large excursions to upset AbS error minimiza-
tion. It is not that LP does better in case (i), e.g. Fig. 5a,
it is that AbS does much worse. In fact, LP performs about the
same in cases (i) and (ii). The conclusions concerning LP analy-
sis as depicted in Figs. 7-9 also apply to the case in Fig. 5a.
The problem is that if one has to deal with case (i) then AbS
does not perform well and there is little choice but to use LP
analysis. An interesting solution to this problem is to convert
case (1) to case (ii) and then apply AbS instead of LP. This
can be done in Fig. 5a, for example, by "peak picking" the bar-
monics, i.e. retain the values only at the harmonic peaks and
discard all other values, then apply AbS to the resulting line
Spectrum. That should give better results than straight LP,
especially for high fundamentals. Another possibility is to

take the spectrum of a single pitch period, sample it at the har-
monics and then use AbS. The main obstacle, however, is the
computational cost associated with AbS. The attraction of LP
modeling is its simplicity; the price that one pays is that the
model spectrum can have only poles, and a degradation in perfor-

mance is expected with an increase in pitch frequency.
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VII. ALL-ZERO MODELING

We have seen in section II that if the model spectrum is
all-pole then the minimization of the LP error in (5) leads to
a set of linear equations (10) which can be easily solved for
the parameters of the model. It is straightforward to show that
if the model spectrum contains zeros (with or without poles), then
the minimization of (5) leads to a set of ponlinear equations
whose solution is generally iterative and not always readily
convergent. Computation-wise then, LP analysis that includes

zeros in the model offers no distinct advantages over ALS.

However, if the model spectrum is all-zerc. then the prob-
lem can be reformulated such that a suboptimal solution can be
obtained noniteratively. The idea is quite simple: Invert the
signal spectrum and apply an all-pole LP analysis, then invert
the all-pole LP spectrum to obtain the desired all-zero model.

We shall call this process inverse LP modeling . This solution

is clearly reasonable, and on the surface even seems to be opti-
mal. Unfortunately, there is a problem. Below we discuss this

problem and show how to deal with it.

We state again that our purpose in spectral modeling is to
obtain a good fit to the envelope of the signal spectrum. The
problem in the solution given above is that, in general, the

envelope of the inverted spectrum is not equal to the inverse
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envelope of the sper.crum. For example, if we invert the signal
spectrum in Fig. 5a, then the harmonic peaks become valleys and
the valleys between the harmonics become the new peaks. we

know that LP analysis on this inverted spectrum will follow these
new peaks whose envelope is not the one we are after. This prob-
lem is not so severe if the signal spectrum is smooth relative

to the order of the model. For example, if the signal spectrum
consists of q zeros only, then the above method leads to the

correct solution for p=q. Therefore, the solution to our prcblem

is to smooth the signal spectrum before we apply inverse LP analy-

sis. However, smoothing introduces a certain amount of error.
Therefore, inverse LP modeling on the smoothed spectrum is only
a suboptimal solution. The type and degree of smoothing can
effect the final result appreciably. Below we discuss these

matters briefly.

The degree to which smoothing is performed jnust depend on
the order of the model considered. For example, a large amount
of smoothing can be tolerated if the order of the model is small.
In general, the simplest and perhaps most effective way to de~-

termine the degree of smoothing is by inspection of the results.

There are several types or methods of spectral smoothing.
One can apply a low pass filter to the spectrum (autocorrelation

smoothing) or to the log spectrum (cepstral smoothing).
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Autocorrelation smoothing has been used extensively by statisti-
cians. Cepstral smoothing is 2 more recent development that

has been employed in speech and picture processing. Another
method of smoothing that has become quite popular recently is

LP smoothing. Indeed, LP modeling can be thought of as just
another method of smoothing the spectrum. The degree of smoothing
is controlled by the order of the predictor. Usually, the order
of the predictor P is chosen to be much larger than the number
of zeros in the modei 9. In this method, the whole procedure

is as follows: (a) Perform a regular p pole LP analysis on the
signal spectrum, where pP>>q. (b) Compute the corresponding LP
Spectrum and invert it. (c) Perform a g-pole LP analysis on the
inverted spectrum. The resulting predictor coefficients are the

desired parameters of the all-zero model.

We point out that in speech analysis all-zero modeling can

be used to study the spectral characteristics of glottal pulses.
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VIII. CONCLUSIONS

Linear predictive analysis was presented as a problem in
Spectral modeling in which the signal spectrum is modeled by

an all-pole spectrum through the minimization of an error measure

given by the integrated ratio of the signal and model spectra.

B B i e B

The parameters of the all-pole model are obtained as the solu-

tion of a set of linear equations. The only values needed for

H

the computation of all P parameters are the first p+l autocorre-

lation coefficients which are computed from the signal spectrum el
by a simple Fourier transform. Alternatively, the autocorrela- 13
_ tion coefficients can be computed from the time signal, if avai- o
i: lable. aw
.: The spectral formulation leads to the method of selective 1
: linear prediction where selected portions of a spectrum can be .
\;' fitted by an all-pole spectrum. This method allows for arbi- i3
‘: trary spectral shaping in tne frequency domain, thus obviating -
the need for any special time domain filtering. 1In addition, - i
~ different portions of a spectrum can be fitted by different num- il ;:
- bers of poles, a property that is useful in Speech recognition ::
:‘ applications. fThe method is also applicable to linear predictive X
;3 speech compression systems where different sampling rates can 1T |
‘ be simulated without the need for sharp filtering or down sampling. e 2«
x 4 1
1 oe |
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LP analysis has also been applied to the modeling of dis-
crete spectra, such as harmonic and filter bank spectra. It
was shown that the modeling process has definite problems as
the number of spectral lines decreases, i.e. as the fundamental
frequency increases. This has clear implications for the analy-
sis of high-pitched voices, such as female and children speech.
For the special case when the harmonic Spectrum is a sampled
all-pole spectrum, we were able to recover the all-pole Spectrum

by first applying inverse autocorrelation smoothing. However,

this method of smoothing was not recommended as a general m-thod

of dealing with the problems associated with high fundamentals.

A detailed comparison was given between LP modeling and
analysis-by-synthesis (AbS) in which the error measure is defined
as the average of the Square of the difference between the sig-
nal and model log spectra. The two methods were seen to have
two properties in common: (@) The spectral matching can be done
selectively to any portion of the Spectrum, and (b) both error
Criteria are functions of the ratio of the original and model
Spectra, which results in a matching process that berforms
uniformly over the frequency range of interest. For the special
case of an all-pole model, LP analysis was seen to offer two
important advantages: (a) The computations for the spectral

parameters are straightforward and noniterative, and (b) if the

55

" e ——— P
= S L e g MRS oy v
i e e o ol sl . : it HaR i *




L L
: g S T S

'r_w'-

‘e
F&Jr

BBN Report No. 2578 Bolt Beranek and Newman Inc.

time signal is available there is 1o need to compute the spectrum
first. However, the major difference between LpP and AbS modeling
is in the quality of match between the model and signal spectra.
If the variations of the signal spectrum about the model spectrum
are large, then LP analysis is preferable to AbS. This is usually
the case if the signal spectrum is FFT-derived from a time sig-
nal. However, if the signal spectrum is smooth relative to tl.e
model spectrum, then AbS is expected to give better results than

LP analysis. This occurs with filter bank spectra and cepstrally

(or otherwise) smoothed spectra.

Finally, we gave a suboptimal solution to the problem of
all-zero modeling using LP analysis. The solution is simply to
apply all-pole LP modeling to the inverted spectrum. This, how-

ever, requires that the spectrum be smoothed before inversion.
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